Immediate exercise hyperemia in humans is contraction intensity dependent: evidence for rapid vasodilation.
نویسندگان
چکیده
We tested the hypothesis that rapid vasodilation proportional to contraction intensity contributes to the immediate (first cardiac cycle after initial contraction) exercise hyperemia. Ten healthy subjects performed single 1-s isometric forearm contractions at 5, 10, 15, 20, 30, 50, and 70% maximal voluntary contraction intensity (MVC) in arm above heart (AH) and below heart (BH) positions. Forearm blood flow (FBF; brachial artery mean blood velocity, Doppler ultrasound), mean arterial pressure (arterial tonometry), and heart rate (electrocardiogram) were measured beat by beat. Venous emptying (measured with a forearm strain gauge) was already maximized at 5% MVC, indicating that increases in contraction intensity did not further empty the forearm veins. Immediate increases in FBF were linearly proportional to contraction intensity from 5 to 70% MVC in AH (slope = 4.4 +/- 0.5%DeltaFBF/%MVC). In BH, the immediate increase in FBF demonstrated a curvilinear relationship with increasing contraction intensity and was greater than AH at 15, 20, 30, and 50% MVC (P < 0.05). Peak changes in FBF were greater in BH vs. AH from 10 to 50% MVC, even when venous refilling was complete (P < 0.05). These data support the existence of a rapid-acting vasodilatory mechanism(s) at the onset of human forearm exercise.
منابع مشابه
Invited Review HIGHLIGHTED TOPIC Skeletal and Cardiac Muscle Blood Flow Immediate exercise hyperemia: contributions of the muscle pump vs. rapid vasodilation
Tschakovsky, Michael E., and Don D. Sheriff. Immediate exercise hyperemia: contributions of the muscle pump vs. rapid vasodilation. J Appl Physiol 97: 739–747, 2004; 10.1152/japplphysiol.00185.2004.—A striking characteristic of the blood flow adaptation at exercise onset is the immediate and substantial increase in the first few (0–5 s) seconds of exercise. The purpose of this mini-review is to...
متن کاملImmediate exercise hyperemia: contributions of the muscle pump vs. rapid vasodilation.
A striking characteristic of the blood flow adaptation at exercise onset is the immediate and substantial increase in the first few (0-5 s) seconds of exercise. The purpose of this mini-review is to put into context the present evidence regarding mechanisms responsible for this phase of exercise hyperemia. One potential mechanism that has received much attention is the mechanical effect of musc...
متن کاملHIGHLIGHTED TOPIC Skeletal and Cardiac Muscle Blood Flow Evidence for a rapid vasodilatory contribution to immediate hyperemia in rest-to-mild and mild-to-moderate forearm exercise transitions in humans
Saunders, Natasha R., and Michael E. Tschakovsky. Evidence for a rapid vasodilatory contribution to immediate hyperemia in rest-to-mild and mild-to-moderate forearm exercise transitions in humans. J Appl Physiol 97: 1143–1151, 2004. First published May 21, 2004; 10.1152/japplphysiol.01284.2003.—Controversy exists regarding the contribution of a rapid vasodilatory mechanism(s) to immediate exerc...
متن کاملMetabolic control of muscle blood flow during exercise in humans.
During muscle contraction, several mechanisms regulate blood flow to ensure a close coupling between muscle oxygen delivery and metabolic demand. No single factor has been identified to constitute the primary metabolic regulator, yet there are signal transduction pathways between skeletal muscle and the vasculature that induce vasodilation. A link between muscle metabolic events and microvascul...
متن کاملEvidence for impaired skeletal muscle contraction-induced rapid vasodilation in aging humans.
We tested the hypothesis that aging is associated with an impaired contraction-induced rapid vasodilation in healthy adults. We reasoned that employing single contractions of a small muscle mass would allow us to isolate the local rapid vasodilatory responses independent of systemic hemodynamic and sympathetic neural influences on forearm hemodynamics. We measured forearm blood flow (Doppler ul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 96 2 شماره
صفحات -
تاریخ انتشار 2004